MATH2050C Assignment 11

Deadline: April 9, 2024.
Hand in: 5.3 no. 1, 5, 6, 12, 15.

Section 5.3 no. $1,3,4,5,6,12,13,15,17$.

See next page

Continuous Functions in \mathbb{R}^{n}

Four theorems are proved in Section 5.4 in our textbook. They are Boundedness Theorem, Max-Min Theorem, Root Theorem and Bolzano Theorem. We would like to extend them to higher dimensions. First recall some facts:

A function f in a set E in \mathbb{R}^{n} is continuous at $\mathbf{x} \in E$ if for each $\varepsilon>0$, there is some δ such that $|f(\mathbf{y})-f(\mathbf{x})|<\varepsilon$ for all $\mathbf{y} \in E,|\mathbf{y}-\mathbf{x}|<\delta$ (here $|\mathbf{x}-\mathbf{y}|$ is the Euclidean distance between \mathbf{x} and \mathbf{y}.) A vector-valued function F from $E \subset \mathbb{R}^{n}$ to \mathbb{R}^{m} is continuous at \mathbf{x} if each component F_{1}, \cdots, F_{m} is continuous in E (here $F(\mathbf{x})=\left(F_{1}(\mathbf{x}), \cdots, F_{m}(\mathbf{x})\right)$.) Note that Sequential Criterion and Composition Rule hold for these functions.

Boundedness Theorem Let f be continuous on a closed, bounded set E in \mathbb{R}^{n}. It is bounded.

Max-min Theorem Let f be continuous on a closed, bounded set E in \mathbb{R}^{n}. There exist \mathbf{x}_{1} and \mathbf{x}_{2} in E such that $f\left(\mathbf{x}_{1}\right) \leq f(\mathbf{x})$ and $f(\mathbf{x}) \leq f\left(\mathbf{x}_{2}\right)$ for all $\mathbf{x} \in E$.

Here we replace $[a, b]$ by a closed, bounded set. A set is closed if it contains all its cluster points. It is bounded if there exists some M such that $|\mathbf{x}| \leq M$ for all \mathbf{x} in this set. Both theorems can be proved by the same arguments as in the one-dimensional case.

Root Theorem Let f be continuous on a connected set E in \mathbb{R}^{n}. Suppose there are \mathbf{x}_{1} and \mathbf{x}_{2} in E satisfying $f\left(\mathbf{x}_{1}\right) f\left(\mathbf{x}_{2}\right)<0$. Then there is some $\mathbf{z} \in E$ such that $f(\mathbf{z})=0$.

A set E is connected if every two points \mathbf{x}_{1} and \mathbf{x}_{2} in E can be connected by a continuous curve from \mathbf{x}_{1} to \mathbf{x}_{2} in E, that is, $\gamma(0)=\mathbf{x}_{1}, \gamma(1)=\mathbf{x}_{2}$. Here a continuous curve $\gamma(t)=$ $\left(\gamma_{1}(t), \cdots, \gamma_{n}(t)\right)$ is map from $[0,1]$ to E where all components γ_{k} 's are continuous.
The proof is a reduction to one-dimension. Fix a continuous curve γ in E connecting \mathbf{x}_{1} to \mathbf{x}_{2}. Consider the composite function $g(t)=f(\gamma(t))$ which is a continuous function on $[0,1]$ to \mathbb{R}. As $g(0) g(1)=f\left(\mathbf{x}_{1}\right) f\left(\mathbf{x}_{2}\right)<0$, By Root Theorem, $g(c)=0$ for some $c \in(0,1)$. Thus $f(\xi)=0$ where $\xi=\gamma(c)$.

Bolzano Theorem Let f be a continuous function in a closed, bounded, connected set E in \mathbb{R}^{n}. For any c lying between $\min f$ and $\max f$, there is some $\mathbf{x} \in E$ such that $f(\mathbf{x})=c$.

The proof of this theorem is left to you.

In Advanced Calculus we study integration on regions. A region consists of all points lying inside a closed curve (or bounded by several closed curves) as well as all the boundary points (that is, points on these curves). It is a closed, bounded, connected set.

